Weed Communities in Strip-Tillage Corn/No-Tillage Soybean Rotation and Chisel-Plow Corn Systems after 10 Years of Variable Management

Author:

Drewitz Nathaniel M.,Stoltenberg David E.

Abstract

AbstractPrevious research has shown that strip-tillage (ST) systems conserve soil, reduce production costs, and save time for growers compared with intensive-tillage systems. In contrast to these well-documented benefits, we have limited information on weed community dynamics and management risks in ST corn (Zea maysL.) production systems in the northern Corn Belt. Therefore, we conducted research in 2015 and 2016 to characterize weed community composition, emergence patterns, and aboveground productivity in an ST corn/no-tillage (NT) soybean [Glycine max(L.) Merr.] rotation that was established in 2007 compared with a long-term intensive-tillage chisel-plow (CP) continuous-corn system. Fifteen or more weed species were identified in nontreated quadrats in each cropping system in each year. Common lambsquarters (Chenopodium albumL.) was the most abundant weed species across systems and years.Chenopodium albumdensities were similar between CP and ST corn phases and were approximately 2-fold greater compared with the NT soybean phase. Other abundant weed species occurred at much lower densities thanC. album. In each year, cumulative emergence of nontreated weed communities was described best by a logistic function in each cropping system. Maximum weed community emergence was greater in CP corn than ST corn phases in 2015, but did not differ in 2016. In the ST corn phase, most (about 75%) weed community emergence occurred in the in-row (tilled) zone compared with the between-row (nondisturbed) zone. Total late-season weed shoot biomass did not differ between nontreated CP and ST corn phases in either year, withC. albumaccounting for >85% of total weed biomass in these phases. These results suggest that weed community composition, total emergence, and productivity were similar between CP and ST corn phases after 10 yr. Our findings, coupled with previous research that showed favorable agronomic performance and greater soil conservation associated with the long-term ST corn/NT soybean system, suggest that production risks are no greater than a CP corn system, while processes that underpin ecosystem services are enhanced. These results provide strong evidence to support grower adoption of ST practices as an alternative to intensive tillage.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference32 articles.

1. [WICST] Wisconsin Integrated Cropping Systems Trial Project (2017) Home page. https://wicst.wisc.edu. Accessed: May 13, 2017

2. Long-term tillage effects on seed banks in three Ohio soils;Cardina;Weed Sci,1991

3. A Comparison of Soil Properties after Five Years of No‐Till and Strip‐Till

4. Review: Multivariate analysis in weed science research

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3