Prevalence and Mechanism of Atrazine Resistance in Waterhemp (Amaranthus tuberculatus) from Nebraska

Author:

Vennapusa Amaranatha Reddy,Faleco Felipe,Vieira Bruno,Samuelson Spencer,Kruger Greg R.,Werle Rodrigo,Jugulam Mithila

Abstract

AbstractResistance to atrazine (a photosystem II [PSII] inhibitor) is prevalent in waterhemp [Amaranthus tuberculatus(Moq.) J. D. Sauer] across the U.S. Midwest. Previous research suggests that target-site mutation or rapid metabolism of atrazine mediated by glutathioneS-transferase (GST) conjugation confers resistance inA. tuberculatusfrom Illinois. The distribution and mechanism of resistance to atrazine inA. tuberculatuspopulations from Nebraska (NE) are unknown. In this research we (1) evaluated the response and frequency of resistance in NEA. tuberculatusto soil-applied PSII (metribuzin and atrazine) and protoporphyrinogen oxidase (sulfentrazone) inhibitors, as well as POST-applied atrazine; and (2) determined the mechanism of atrazine resistance in NEA. tuberculatus. The chloroplasticpsbAgene, coding for a D1 protein (the target site of atrazine) was sequenced in 85 plants representing 27 populations ofA. tuberculatus. Furthermore, 24 plants selected randomly from four atrazine-resistant (AR) populations were used to determine the metabolism of atrazine via GST conjugation. Results from the soil-applied herbicide evaluation suggest that metribuzin (0.56 kg ai ha−1) and sulfentrazone (0.28 kg ai ha−1) were effective onA. tuberculatusmanagement. PRE and POST screenings against atrazine in the greenhouse indicate that atrazine (1.345 kg ai ha−1) was not effective on 39% and 73% of theA. tuberculatuspopulations evaluated (total of 109 and 85 populations, respectively), suggesting the prevalence of atrazine resistance inA. tuberculatusin NE. Sequence analysis of thepsbAgene found no known point mutations conferring atrazine resistance. However, the AR plants conjugated atrazine via GST activity faster than the known atrazine-susceptibleA. tuberculatus. Overall, the outcome of this study demonstrates the predominance of metabolism-based resistance to atrazine inA. tuberculatusfrom NE, which may predispose this species to evolve resistance to other herbicides. The use of integrated management strategies forA. tuberculatusis crucial for the control of this troublesome species.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3