Abstract
The gap between a recently developed dynamical version of relaxed magnetohydrodynamics (RxMHD) and ideal MHD (IMHD) is bridged by approximating the zero-resistivity ‘ideal’ Ohm's law (IOL) constraint using an augmented Lagrangian method borrowed from optimization theory. The augmentation combines a pointwise vector Lagrange multiplier method and global penalty function method and can be used either for iterative enforcement of the IOL to arbitrary accuracy, or for constructing a continuous sequence of magnetofluid dynamics models running between RxMHD (no IOL) and weak IMHD (IOL almost everywhere). This is illustrated by deriving dispersion relations for linear waves on an MHD equilibrium.
Funder
Simons Foundation
Australian Research Council
Publisher
Cambridge University Press (CUP)
Reference49 articles.
1. Fathi, A. 2009 Weak KAM Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics, vol. 88. Cambridge University Press. 300 pp., ISBN: 0521822289.
2. Two-dimensional Euler flows in slowly deforming domains
3. Multi-region relaxed magnetohydrodynamics with anisotropy and flow;Dennis;Phys. Plasmas,2014
4. Symplectic maps, variational principles, and transport
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献