Morphology of two-dimensional MRI in axial symmetry

Author:

Montani G.,Pugliese D.

Abstract

In this paper, we analyse the linear stability of a stellar accretion disk having a stratified morphology. The study is performed in the framework of ideal magneto-hydrodynamics and therefore results in a characterization of the linear unstable magneto-rotational modes. The peculiarity of the present scenario consists of adopting the magnetic flux function as the basic dynamical variable. Such a representation of the dynamics allows us to take account of the co-rotation theorem as a fundamental feature of the ideal plasma equilibrium and to evaluate its impact on the perturbation evolution. According to the Alfvenic nature of the magneto-rotational instability, we consider an incompressible plasma profile and perturbations propagating along the background magnetic field. Furthermore, we develop a local perturbation analysis around fiducial coordinates of the background configuration and deal with very small-scale linear dynamics in comparison to the background inhomogeneity size. The main issue of the present study is that the condition for the emergence of unstable modes is the same in the stratified plasma disk as in the case of a thin configuration. Such a feature is the result of the cancellation of the vertical derivative of the disk angular frequency from the dispersion relation, which implies that only the radial profile of the differential rotation is responsible for the trigger of the growing modes.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference11 articles.

1. “Crystal” magnetic structure in axisymmetric plasma accretion disks

2. Instability, turbulence, and enhanced transport in accretion disks

3. Black holes in binary systems. Observational appearance;Shakura;Astron. Astrophys.,1973

4. The Non-uniform Rotation of the Sun and its Magnetic Field

5. A powerful local shear instability in weakly magnetized disks. I. Linear analysis. II. Nonlinear evolution;Velikhov;Sov. Phys. JETP,1959

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3