Continuous-in-time approach to flow shear in a linearly implicit local gyrokinetic code

Author:

Christen NicolasORCID,Barnes MichaelORCID,Parra Felix I.

Abstract

A new algorithm for toroidal flow shear in a linearly implicit, local $\delta f$ gyrokinetic code is described. Unlike the current approach followed by a number of codes, it treats flow shear continuously in time. In the linear gyrokinetic equation, time-dependences arising from the presence of flow shear are decomposed in such a way that they can be treated explicitly in time with no stringent constraint on the time step. Flow shear related time dependences in the nonlinear term are taken into account exactly, and time dependences in the quasineutrality equation are interpolated. Test cases validating the continuous-in-time implementation in the code GS2 are presented. Lastly, nonlinear gyrokinetic simulations of a JET discharge illustrate the differences observed in turbulent transport compared with the usual, discrete-in-time approach. The continuous-in-time approach is shown, in some cases, to produce fluxes that converge to a different value than with the discrete approach. The new approach can also lead to substantial computational savings by requiring radially narrower boxes. At fixed box size, the continuous implementation is only modestly slower than the previous, discrete approach.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference29 articles.

1. Advances in the simulation of toroidal gyro‐Landau fluid model turbulence

2. Dependence of the L- to H-mode power threshold on toroidal rotation and the link to edge turbulence dynamics

3. Comparisons and physics basis of tokamak transport models and turbulence simulations

4. Hammett, G. W. , Dorland, W. , Loureiro, N. F. & Tatsuno, T. 2006 Implementation of large scale $\boldsymbol {E}\times \boldsymbol {B}$ shear flow in the gs2 gyrokinetic turbulence code. In Poster presented at the DPP meeting of the American Physical Society.

5. Turbulent Transport in Tokamak Plasmas with Rotational Shear

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3