Transonic magnetohydrodynamic flows

Author:

LIFSCHITZ A.,GOEDBLOED J. P.

Abstract

Stationary flows of an ideal plasma with translational symmetry along the (vertical) z axis are considered, and it is demonstrated how they can be described in the intrinsic (natural) coordinates (ξ, η, &), where ξ is a label of flux and stream surfaces, η is the total pressure and ϑ is the angle between the horizontal magnetic (and velocity) field and the x axis. Three scalar nonlinear equilibrium equations of mixed elliptic–hyperbolic type for ϑ(ξ, η), ξ(η, ϑ) and η(ϑ, ξ) respectively are derived. The equilibrium equation for ϑ(ξ, η) is especially useful, and has considerable advantages compared with the coupled system of algebraic–differential equations that are conventionally used for studying plasma flows. In particular, for this equation the location of the regions of ellipticity and hyperbolicity can be determined a priori. Relations between the equilibrium equation for ϑ(ξ, η) and the nonlinear hodograph equation for ξ(η, ϑ) are elucidated. Symmetry properties of the intrinsic equilibrium equations are discussed in detail and their self-similar solutions are described. In particular, magnetohydrodynamic counterparts of several classical flows of an ideal fluid (the Prandtl–Meyer flows around a corner, the spiral flows and the Ringleb flows around a plate, etc.) are found. Stationary flows described in this paper can be used for studying both astrophysical and thermonuclear plasmas.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3