Abstract
The Kelvin-Helmholtz problem is analyzed by a set of general hydromagnetic equations, which includes ideal magnetohydrodynamic and Chew-Goldberger-Low models as particular cases. A formalism is given that facilitates comparison between results from different models. A sheared flow is one in which the velocity has no component in the y direction, and such that the x and z components of the velocity depend on the y co-ordinate. A sheared field is defined similarly. The differential equations for linear modes of oscillation of a sheared flow in a sheared magnetic field is obtained; and the energy of these modes is studied. As a particular case of oscillations of a sheared flow, the properties of the modes excited by arbitrary modulation of a tangential discontinuity are studied. The relationship between radiation of waves from such a discontinuity and instability of the system is brought out by considering the system energy. Domains of absolute stability are given; and the different hydromagnetic models are compared by examining the predicted domains. It is found that anisotropy plays an important role in the conditions of stability.
Publisher
Cambridge University Press (CUP)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献