Trapped particle precession and sub-bounce zonal flow dynamics in tokamaks

Author:

Sengupta W.ORCID,Hassam A. B.

Abstract

A drift-kinetic calculation in an axisymmetric tokamak, with super-diamagnetic flows, is presented to elucidate the relation between the radial electric field, $E_{r}$, zonal flows and the rapid precession of the trapped particle (TP) population. It has been shown earlier (Rosenbluth & Hinton, Phys. Rev. Lett., vol. 80(4), 1998, p. 724, hereafter RH) that an initial radial electric field results in geodesic acoustic mode oscillations which subsequently Landau damp, resulting in a much smaller final residual electric field, and accompanying parallel zonal flows. We observe an apparent paradox: the final angular momentum in the RH parallel zonal flow is much smaller than the angular momentum expected from the well-known rapid precession of the trapped particle population in the RH residual electric field. We reconcile this paradox by illuminating the presence of a population of reverse circulating particle flows that, dominantly, are equal and opposite to the rapid TP precession. Mathematically, the calculation is facilitated by transforming to an energy coordinate shifted from conventional by an amount proportional to $E_{r}$. We also discuss the well-known RH coefficient in the context of effective mass and show how the TP precession and the opposite circulating flows contribute to this mass. Finally, we show that in the long wavelength limit, the RH flows and RH coefficient arise as a natural consequence of conservation of toroidal angular momentum and the second adiabatic invariant.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3