Abstract
Given the large anisotropy of transport processes in magnetized plasmas, the magnetic field structure can strongly impact heat diffusion: magnetic surfaces and cantori form barriers to transport while chaotic layers and island structures can degrade confinement. When a small but non-zero amount of perpendicular diffusion is included, the structure of the magnetic field becomes less important, allowing pressure gradients to be supported across chaotic regions and island chains. We introduce a metric for the effective volume over which the local parallel diffusion dominates based on the solution to the anisotropic heat diffusion equation. To validate this metric, we consider model fields with a single island chain and a strongly chaotic layer for which analytic predictions of the relative parallel and perpendicular transport can be made. We also analyse critically chaotic fields produced from different sets of perturbations, highlighting the impact of the mode number spectrum on the heat transport. Our results indicate that this metric coincides with the effective volume of non-integrability in the limit
$\kappa _{\perp } \rightarrow 0$
, where
$\kappa_{\perp}$
is the perpendicular diffusion coefficient. We propose that this metric be used to assess the impact of non-integrability on the heat transport in stellarator equilibria.
Funder
U.S. Department of Energy
Simons Foundation
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献