Helical magnetic mirror performance at up- and downstream directions of the axial force

Author:

Sudnikov Anton V.ORCID,Ivanov Ivan A.ORCID,Inzhevatkina Anna A.ORCID,Larichkin Mikhail V.,Postupaev Vladimir V.ORCID,Sklyarov Vladislav F.,Tolkachev Mikhail S.,Ustyuzhanin Viktor O.

Abstract

The paper presents experimental results from the SMOLA device on the testing of the helical mirror confinement hypothesis. Helical mirror confinement is the technique of an active control of axial plasma losses from a confinement zone by multiple magnetic mirrors that move along the axis in the reference frame of the plasma that experiences $\boldsymbol{E} \times \boldsymbol{B}$ rotation due to an applied radial electric field. Theory predicts that a helical mirror will provide an axial force that modifies the plasma flow and, simultaneously, density pinching to the axis. The force direction depends on the plasma rotation direction. Experimental data on the axial plasma losses at different direction of the magnetic mirror movement are presented. If the trapped ions move in the direction opposite to the direction of the axial losses, then the particle flux reduces in the broad range of the plasma density. The confinement improves with the increase of the fraction of the trapped particles (effective mirror ratio was up to $R_{{\rm eff}}=5.8\pm 1.4$ ). If the trapped ions move in the same direction as the axial losses, then the flux depends on density. At intermediate densities, the integral flux through the transport section rises compared to the plasma flowing through the straight magnetic field. The effective mirror ratio is lower and does not significantly depend on the fraction of the trapped particles (effective mirror ratio at intermediate density was $R_{{\rm eff}}=3.3\pm 0.8$ ).

Funder

Russian Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference23 articles.

1. Novosibirsk project of gas-dynamic multiple-mirror trap;Beklemishev;Fusion Sci. Technol,2013

2. Plasma confinement by moving multiple mirrors;Be'ery;Plasma Phys. Control. Fusion,2018

3. Collisionless particle dynamics in trap sections with helical corrugation

4. Tandem mirror device: experimental results, problems, and prospects;Dimov;Plasma Phys. Rep,1997

5. Encouraging results and new ideas for fusion in linear traps;Bagryansky;J. Fusion Energy,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3