Dielectric conductivity of a bounded plasma and its rate of convergence towards its infinite-geometry value

Author:

OMNES PASCAL

Abstract

This paper deals with the linear response of a plasma in a one-dimensional bounded geometry under the action of a time-periodic electric field. The nonlinear Vlasov equation is solved by following the characteristic curves until they reach the boundary of the domain, where the distribution function of the incoming particles is supposed to be known and independent of time. Then, a first-order Taylor expansion in the velocity variable is performed, thanks to an approximation of the exact characteristics by the unperturbed ones. The resulting first-order correction to the distribution function is finally integrated over velocities to yield the dielectric function. The special case of a plane wave for the electric field is examined and the results are compared with the more usual unbounded case: the integral does not present any singularity in the vicinity of resonant particles and the dielectric function depends on the distance to the boundary and tends to the usual infinite-geometry value when this distance tends to infinity, with a rate of convergence proportional to its inverse square root. Numerical examples are provided for illustration.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3