Interaction of sound waves with an inhomogeneous magnetized plasma in a strongly nonlinear resonant slow-wave layer

Author:

RUDERMAN M. S.

Abstract

The nonlinear theory of driven magnetohydrodynamic (MHD) waves in resonant slow-wave layers developed by Ruderman et al. [Phys. Plasmas4, 75 (1997)] is used to study the interaction of sound waves with a one-dimensional planar magnetic plasma configuration. The physical problem studied here is the same as that considered by Ruderman et al. [Phys. Plasmas4, 91 (1997)]. The difference is in the description of the wave motion in the resonant layer. Ruderman et al. assumed that dissipation dominates non-linearity in the resonant layer and considered the nonlinear term in the governing equation for the wave motion in the resonant layer as a perturbation. In contrast, it is assumed in the present paper that nonlinearity dominates dissipation in the resonant layer. The solution to the governing equation for the wave motion in the resonant layer is obtained in the approximation of strong nonlinearity, and it is shown that the amplitude of the wave motion saturates when the Reynolds number tends to infinity. This solution is then used to derive the nonlinear connection formula that determines the jump across the resonant layer in the velocity component in the direction of inhomogeneity. The nonlinear connection formula is, in turn, used to obtain a nonlinear one- dimensional integral equation describing the outgoing sound wave, which appears owing to partial reflection of the incoming sound wave from the inhomogeneous plasma. The solution to this integral equation is obtained in the form of a sinusoidal wave under the assumption that an incoming sound wave contains the fundamental harmonic only. The coefficient of wave-energy absorption is calculated analytically in the long-wavelength approximation and numerically for arbitrary wavelengths.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3