Gravitational instability of rotating magnetized quantum anisotropic plasma

Author:

Argal Shraddha,Tiwari Anita,Prajapati R. P.,Sharma P. K.

Abstract

The present problem deals with the study of gravitational (Jeans) instability of magnetized, rotating, anisotropic plasmas considering quantum effects. The basic equations of the considered system are constructed using combined Chew–Goldberger–Low (CGL) fluid model and quantum magnetohydrodynamic (QMHD) fluid model. A dispersion relation is obtained using the normal mode technique which is discussed for transverse and longitudinal modes of propagation. It is found that a rotating quantum plasma influences the gravitational mode in transverse propagation but not in longitudinal propagation. The presence of rotation decreases the critical wavenumber and it has a stabilizing effect on the Jeans instability criterion of magnetized quantum plasma in transverse propagation. The firehose instability is unaffected due to the presence of uniform rotation and quantum corrections. We observe from the numerical analysis that region of instability and critical Jeans wavenumber are both decreased due to the presence of uniform rotation. The stabilizing influence of uniform rotation is observed for magnetized, rotating, anisotropic plasmas in the presence of quantum correction. In the case of a longitudinal mode of propagation we found the Jeans instability criterion is not affected by rotation. The quantum diffraction term has a stabilizing effect on the growth rate of the Jeans instability when the wave propagates along the direction of the magnetic field.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3