Abstract
AbstractThe breakdown characteristics of a low-frequency dielectric barrier discharge (DBD) at low pressure are investigated experimentally in He, Ne and Ar. The current waveform of this DBD, a series of pulses, is caused by the results of the electron avalanches under the action of the applied field and the quenching effect of the wall-charge field on the avalanches. Taking into consideration the diffusion loss of the charged particles in the breakdown processes, the experimental investigation and the theoretical analysis of its breakdown characteristics indicate that its breakdown voltage is higher than the calculation by the Paschen law and depends on the filled-gas pressure and the distance between the electrodes, instead of their product. The ion-induced secondary electron emission coefficient and the mean electron energy at the moment of breakdown can also be determined approximately by measuring the breakdown characteristics of the discharge tubes with different distances between the electrodes and combining the theoretical deductions. The experimental results and the theoretical analysis of the breakdown characteristics of this DBD are discussed.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. Investigation of dielectric barrier discharge and dielectric barrier corona discharge in SO2 removal;Sun;Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University,2004
2. Filamentary, patterned, and diffuse barrier discharges
3. Kinetic modeling of ozone generation via dielectric barrier discharges;How;Ozone: Sci. Eng.,2004
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献