Signature of gyro-phase drift

Author:

KOEPKE MARK E.,WALKER J. J.,ZIMMERMAN M. I.,FARRELL W. M.,DEMIDOV V. I.

Abstract

AbstractGyro-phase drift is a guiding center drift that is directly dependent on the charging rate limit of dust grains. The effect of introducing a gyro-phase-dependence on the grain charge leads to two orthogonal components of guiding-center drift. One component, referred to here as grad-q drift, results from the time-varying, gyro-phase angle dependent, in-situ-equilibrium grain charge, assuming that the grain charging is instantaneous. For this component, the grain is assumed to be always in its in-situ-equilibrium charge state and this state gyro-synchronously varies with respect to the grain's average charge state. The other component, referred to here as the gyro-phase drift, arises from any non-instantaneous-charging-induced modification of the diamagnetic drift and points in the direction of -∇RLd (where RLd is the grain gyro-radius), i.e. the direction associated with increasing magnitude of in-situ-equilibrium charge state. For this component, the grain gyro-synchronously undercharges and overcharges with respect to its gyro-synchronously varying, in-situ-equilibrium charge state. These characteristics are illustrated with a single-particle code for predicting grain trajectory that demonstrates how gyro-phase drift magnitude and direction could be exploited, using an extended version of the presented model, as sensitive indicators of the charging time of dust grains because of the cumulative effect of the ever-changing charge state of a grain making repeated excursions in inhomogeneous plasma over many gyro-periods.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3