Investigation on the feasibility of fusion in a compressed beam of ions subject to an electrostatic field

Author:

Paul R. K.

Abstract

The paper reports a new electrostatic-confinement-based fusion approach, where a new non-equilibrium distribution function for an ion-beam compressed by an external electric force has been derived. This distribution function allows the system to possess appreciably low and insignificant thermal energy irrespective of the energy per particle. The spread of energy among particles in the non-equilibrium state is attributed to collisions in the presence of external force, whereas for equilibrium, the spreading of energy is due to the absence of force. The reactivity for a deuterium--deuterium fusion, using the proposed distribution function, has been computed. It is shown that for initiating fusion among the particles, the fusion time is comparable with the energy confinement time of ions for beam energy greater than 160 keV. The estimated energy gain factor Q (ratio of the output fusion power to the power consumed by the system) is around 12 for beam energy 170 keV and ion density 1015 cm−3. The energy loss due to particle scattering is estimated and is taken into consideration for the estimation of energy gain. An outline of a conceptual model of a device is proposed in accordance with the proposed theory and the device is not similar to the one used conventionally in Inertial Electrostatic Confinement systems based on collisions of a beam with a reflex beam or with background gas or plasma.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3