Improved measurement of the electron temperature of a low density shock-heated argon plasma by means of microwaves

Author:

Schneider C. P.

Abstract

The determination of electron temperature of a low density shock-heated argon plasma (3 Torr ≤p1≤ 10 Torr, 5500 °K ≤ 9500 °K) by means of microwave diagnostics is improved with a test section which permits the simultaneous transmission of two microwave beams at different frequencies, and with two corrections applied to the measured attenuation of transmitted waves. The purpose of these corrections is to obtain the true attenuation due to wave power dissipation into the plasma, which is dependent on the electron temperature and density. The first correction takes into account the diffraction of waves by apertures of the test section and the wave defocusing by the plasma. The second correction considers the effect of wave beam bending due to the electron density gradient in the flow direction of the plasma. Both corrections diminish the measured wave attenuation. Consequently a lower ratio of attenuation to phase shift of transmitted waves is determined, which in turn yields lower values of electron collision frequency and electron temperature. This report describes the electron temperature evaluation technique in detail, and presents results. The electron temperature values obtained have a range of uncertainty of – 20 % and +10% only, with exceptions at the beginning of the test time. In most tests, the electron temperature is equal or lower by approximately 1000 °K in comparison with the heavy particle temperature.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3