Transfer learning as a method to reproduce high-fidelity non-local thermodynamic equilibrium opacities in simulations

Author:

Vander Wal Michael D.ORCID,McClarren Ryan G.ORCID,Humbird Kelli D.ORCID

Abstract

Simulations of high-energy density physics often need non-local thermodynamic equilibrium opacity data. These data, however, are expensive to produce at relatively low fidelity. It is even more so at high fidelity such that the opacity calculations can contribute 95 % of the total computation time. This proportion can even reach large proportions. Neural networks can be used to replace the standard calculations of low-fidelity data, and the neural networks can be trained to reproduce artificial, high-fidelity opacity spectra. In this work, it is demonstrated that a novel neural network architecture trained to reproduce high-fidelity krypton spectra through transfer learning can be used in simulations. Further, it is demonstrated that this can be done while achieving a relative per cent error of the peak radiative temperature of the hohlraum of approximately 1 % to 4 % while achieving a 19.4 $\times$ speed up.

Funder

Lawrence Livermore National Laboratory

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3