Numerical study of azimuthal sheath structure and asymmetric anomalous erosion in a stationary plasma thruster

Author:

Liu Hui,Niu Xiang,Yu Da-Ren

Abstract

The influence of the azimuthal electron drift on anomalous erosion and the sheath profile in a stationary plasma thruster (SPT) is analysed in this article. It is found that the anomalous erosion has a self-organized structure, which is formed by the interaction between the plasma and the ceramic walls. In order to interpret the mechanism of the azimuthal erosion structure, a particle in cell (PIC) model is developed to simulate the azimuthal sheath. The results show that the electron azimuthal Hall drift due to crossed electric and magnetic field plays a key role in the azimuthal erosion evolution process. Electron Hall drift can generate an asymmetric sheath structure and induce azimuthal sheath oscillation. Furthermore, an asymmetric sheath caused by the integrated effect of the azimuthal irregular wall structure and azimuthal Hall drift will result in the azimuthal movement of ions. Based on the sheath simulated results, an erosion model is used to simulate the azimuthal erosion evolution. An asymmetric erosion profile caused by the azimuthal asymmetric ion sputtering is found.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3