Wave dynamics of an electrojet: generalized Farley–Buneman instability

Author:

McKENZIE JAMES F.

Abstract

AbstractIn this paper we generalize the classical Farley–Buneman (FB) instability to include space-charge effects and finite electron inertia. The former effect makes the ion-acoustic wave dispersive with the usual resonance appearing at the ion plasma frequency, but other than that the structure of the FB instability remains intact. However, the inclusion of the latter, finite electron inertia, gives rise to the propagating electron-cyclotron mode, albeit modified by collisions. In the presence of differential electron streaming relative to the ions, the interaction between this mode, attempting to propagate against the stream, but convected forward by the stream, and a forward propagating ion-acoustic mode, gives rise to a new instability distinct from the FB instability. The process may be thought of in terms of the coupling between negative energy waves (electron-cyclotron waves attempting to propagate against the stream) and positive energy waves (forward propagating ion-acoustic waves). In principle, the instability simply requires super-ion acoustic streaming electrons and the corresponding growth rates are of the order of one half of the lower hybrid frequency, which are faster than the corresponding FB growth rates. For conditions appropriate to the middle day-side E-region this instability excites a narrow band of frequencies just below the ion plasma frequency. Its role in the generation of electrojet irregularities may be as important as the classical FB instability.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference15 articles.

1. Saturation of the Farley-Buneman instability via nonlinear electron E×B drifts

2. Nonlinear saturation of ‘type I’ irregularities in the equatorial electrojet

3. Wave and stability properties of multi-ion plasmas with applications to winds and flows;McKenzie;Ann. Geophys.,1993

4. A turbulent theoretical framework for the study of current-driven E region irregularities at high altitudes: basic derivation and application to gradient-free situations;Hamza;J. Geophys. Res.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3