An action principle for the Vlasov equation and associated Lie perturbation equations. Part 1. The Vlasov—Poisson system

Author:

Larsson Jonas

Abstract

A new action principle determining the dynamics of the Vlasov–Poisson system is presented (the Vlasov–Maxwell system will be considered in Part 2). The particle distribution function is explicitly a field to be varied in the action principle, in which only fundamentally Eulerian variables and fields appear. The Euler–Lagrange equations contain not only the Vlasov–Poisson system but also equations associated with a Lie perturbation calculation on the Vlasov equation. These equations greatly simplify the extensive algebra in the small-amplitude expansion. As an example, a general, manifestly Manley–Rowesymmetric, expression for resonant three-wave interaction is derived. The new action principle seems ideally suited for the derivation of action principles for reduced dynamics by the use of various averaging transformations (such as guiding-centre, oscillation-centre or gyro-centre transformations). It is also a powerful starting point for the application of field-theoretical methods. For example, the recently found Hermitian structure of the linearized equations is given a very simple and instructive derivation, and so is the well-known Hamiltonian bracket structure of the Vlasov–Poisson system.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Low Lagrangian Formulation of Vlasov-Poisson Equations;Hacettepe Journal of Mathematics and Statistics;2022-12-31

2. Wave-action conservation law for eigenmodes and continuum modes;Physics of Plasmas;2010-08

3. On canonical methods for the study of small perturbations in galaxies;Monthly Notices of the Royal Astronomical Society;2004-10

4. The Adjoint Structure of Linearised Hamiltonian Theory;Physica Scripta;2000-01-01

5. A perturbation method for the Vlasov–Poisson system;Journal of Plasma Physics;1998-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3