Abstract
The exact energy and angular momentum conservation laws are derived by the Noether method for the Hamiltonian and symplectic representations of the gauge-free electromagnetic gyrokinetic Vlasov–Maxwell equations. These gyrokinetic equations, which are solely expressed in terms of electromagnetic fields, describe the low-frequency turbulent fluctuations that perturb a time-independent toroidally-axisymmetric magnetized plasma. The explicit proofs presented here provide a complete picture of the transfer of energy and angular momentum between the gyrocentres and the perturbed electromagnetic fields, in which the crucial roles played by gyrocentre polarization and magnetization effects are highlighted. In addition to yielding an exact angular momentum conservation law, the gyrokinetic Noether equation yields an exact momentum transport equation, which might be useful in more general equilibrium magnetic geometries.
Publisher
Cambridge University Press (CUP)
Reference57 articles.
1. Exact momentum conservation laws for the gyrokinetic Vlasov-Poisson equations
2. Fan, P. , Qin, H. & Xiao, J. 2020 Discovering exact local energy-momentum conservation laws for electromagnetic gyrokinetic system by high-order field theory on heterogeneous manifolds. arXiv:2006.11039v2.
3. Conservation laws for relativistic guiding-center plasma
4. Overview of toroidal momentum transport
5. Transport of momentum in full f gyrokinetics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献