Surface waves on the inhomogeneous interface between radiative electron–ion plasma and vacuum

Author:

Maryam N.ORCID,Rozina Ch.ORCID,Arooj B.,Asma A.,Kourakis I.ORCID

Abstract

The impact of temperature inhomogeneity, surface charge and surface mass densities on the stability analysis of charged surface waves at the interface between dense, incompressible, radiative, self-gravitating magnetized electron–ion plasma and vacuum is investigated. For such an incompressible plasma system, the temperature inhomogeneity is governed by an energy balance equation. Adopting the one-fluid magnetohydrodynamic (MHD) approximation, a general dispersion relation is obtained for capillary surface waves, which takes into account gravitational, radiative and magnetic field effects. The dispersion relation is analysed to obtain the conditions under which the plasma–vacuum interface may become unstable. In the absence of electromagnetic (EM) pressure, astrophysical objects undergo gravitational collapse through Jeans surface oscillations in contrast to the usual central contraction of massive objects due to enhanced gravity. EM radiation does not affect the dispersion relation much, but actually tends to stabilize the Jeans surface instability. In certain particular cases, pure gravitational radiation may propagate on the plasma vacuum interface. The growth rate of radiative dissipative instability is obtained in terms of the wavevector. Our theoretical model of the Jeans surface instability is applicable in astrophysical environments and also in laboratory plasmas.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3