Magnetohydrodynamic stability of plasmas with ideal and relaxed regions

Author:

MILLS R. L.,HOLE M. J.,DEWAR R. L.

Abstract

AbstractA unified energy principle approach is presented for analysing the magnetohydrodynamic (MHD) stability of plasmas consisting of multiple ideal and relaxed regions. The gauge a = ξ × B for the vector potential, a, of linearized perturbations is used, with the equilibrium magnetic field B obeying a Beltrami equation, × B = αB, in relaxed regions. In a region with such a force-free equilibrium Beltrami field we show that ξ obeys the same Euler–Lagrange equation whether ideal or relaxed MHD is used for perturbations, except in the neighbourhood of the magnetic surfaces where B · is singular. The difference at singular surfaces is analysed in cylindrical geometry: in ideal MHD only Newcomb's small solutions are allowed, whereas in relaxed MHD only the odd-parity large solution and even-parity small solution are allowed. A procedure for constructing global multi-region solutions in cylindrical geometry is presented. Focusing on the limit where the two interfaces approach each other arbitrarily closely, it is shown that the singular-limit problem encountered previously by Hole et al. in multi-region relaxed MHD is stabilized if the relaxed-MHD region between the coalescing interfaces is replaced by an ideal-MHD region. We then present a stable (k, pressure) phase-space plot, which allows us to determine the form a stable pressure and field profile must take in the region between the interfaces. From this knowledge, we conclude that there exists a class of single-interface plasmas that were found to be stable by Kaiser and Uecker, but are shown to be unstable when the interface is resolved.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3