On ion—electron beams emitted by a plane

Author:

Winograd Yeshaiahu Y.

Abstract

The non-linear one-dimensional steady-state equations which govern the flow of an ion—electron beam emitted from a plane are solved in the phase plane, and it is shown that a perfectly neutralized beam follows for a large range of injection velocities of the electrons. When the velocity of the ions is less than the electron sound speed the transition region for the neutralization has a length of the order of a Debye length λD = (kT)½ (4πNe2)–½, which is a typical plasma sheath. The maximum velocity of injection of the electrons for which neutralization is predicted is, in this case, the sound speed of the electrons. If the electrons are injected with a supersonic speed, they cannot be decelerated continuously to the subsonic speed corresponding to the velocity of the ions. No bound is set on the electron injection velocity from below. When the velocity of the ion beam is greater than the electron sound speed, oscillations with an amplitude which depends on the velocity of injection of the electrons, and a wavelength which depends on the ratio of the ion velocity to the electron speed of sound, are found. In this case the injection speed of the electrons needed to obtain the steady-state oscillatory solution is bounded both from above and from below. Subsonic electrons cannot be accelerated continuously to the supersonic velocity required to match the velocity of the ions, and within the supersonic range there is shown to be a limit (depending on the ratio of the ion velocity to the electron speed of sound, so that faster electrons cannot be decelerated continuously to match the (supersonic) ion velocity.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference21 articles.

1. Gold H. , Julis R. J. , Murana F. A. & Hawersaat W. H. 1965 Description and operation of spacecraft in Sert I ion thruster ifight test. NASA TMX-1077.

2. Mirels H. & Rosenbaum B. M. 1960 Analysis of one-dimensional ion rocket with grid neutralization. NASA TND-266.

3. Cybulski R. J. , Shellhammer D. M. , Lovell R. R. , Domino K. J. & Kotnik J. T. 1965 Results from Sert I ion rocket ffight test. NASA TDN-2718.

4. Winograd Y. Y. 1966 Ph.D. Thesis. Brown University, Providence, R.I.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3