Abstract
For a magnetised plasma in a straight magnetic guide field, we derive a set of four-dimensional kinetic equations, which can capture electromagnetic turbulence in the drift kinetic limit. To do so, we start from the gyrokinetic equations, employ a Laguerre decomposition in the perpendicular velocity direction, retaining only the dominant gyroaverage contributions and only the first two Laguerre moments that source the electromagnetic fluctuations. The model conserves free energy, and can describe electromagnetic turbulence for a plasma at the transition between fluid and gyrokinetic regimes (
$k_\perp \rho _i\approx 1$
range of scales), as dominant finite-Larmor-radius (FLR) effects are considered. In addition to the three dimensions in positions space, we retain the parallel velocity dependence, which we describe via a Hermite representation. Employing this system, but without any other physics-based assumptions for the plasma species that can bias results, will allow us to investigate how fluid effects transition into the kinetic range, and analyse the interplay between spatial and velocity space mixing for electromagnetic plasma turbulence.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ALLIANCE: Spectral solver for kinetic plasma turbulence;Journal of Computational Physics;2023-12
2. Generalized Hamiltonian drift-fluid and gyrofluid reductions;Journal of Physics A: Mathematical and Theoretical;2023-07-27
3. An overview of dynamical methods for studying transitions between states in sheared plasma flows;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-01-02