Magnetic diffusion and current profiles during current reversal

Author:

Shkarofsky I. P.,Shoucri Magdi

Abstract

Computer studies are performed on the temporal changes of magnetic flux surfaces and current density profiles in a tokamak (of 25 cm minor radius) undergoing current reversal. The flux on the plasma boundary is forced to vary in time so as to model a total current reversal from positive to negative in about 5 ms. A two-dimensional computer code with radial and azimuthal spatial variations has been written, as well as a simpler one-dimensional code with only radial variation. The two-dimensional code shows that the flux variation takes place in way showing the formation of magnetic islands. Both codes show that the current penetration in the plasma is much slower than the reversal time. This slow resistive penetration occurs even with an enhanced resistivity factor which increases towards the boundary and with a temperature profile which decays in time towards zero current. After maintaining a constant flat negative current for certain period, results are also obtained on the profiles during reversing back rom negative to positive current and maintaining the constant positive current.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference10 articles.

1. Hawryluk R. J. , Bretz N. , Dimock D. , Hinnov E. , Johson D. , Monticello D. , McCune D. & Suckewer S. 1980 Princeton University Report PPPL-1572.

2. Volt-second consumption during the start-up phase of PLT

3. The ontogeny of a Tokamak discharge

4. Influence of the shape and magnitude of the discharge current pulse on plasma containment and heating in Tokamak-3

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3