Fast-ion physics in SPARC

Author:

Scott S. D.ORCID,Kramer G. J.ORCID,Tolman E. A.ORCID,Snicker A.,Varje J.ORCID,Särkimäki K.ORCID,Wright J. C.ORCID,Rodriguez-Fernandez P.ORCID

Abstract

Potential loss of energetic ions including alphas and radio-frequency tail ions due to classical orbit effects and magnetohydrodynamic instabilities (MHD) are central physics issues in the design and experimental physics programme of the SPARC tokamak. The expected loss of fusion alpha power due to ripple-induced transport is computed for the SPARC tokamak design by the ASCOT and SPIRAL orbit-simulation codes, to assess the expected surface heating of plasma-facing components. We find good agreement between the ASCOT and SPIRAL simulation results not only in integrated quantities (fraction of alpha power loss) but also in the spatial, temporal and pitch-angle dependence of the losses. If the toroidal field (TF) coils are well-aligned, the SPARC edge ripple is small (0.15–0.30 %), the computed ripple-induced alpha power loss is small ( ${\sim } 0.25\,\%$ ) and the corresponding peak surface power density is acceptable ( $244\ \textrm{kW}\ \textrm {m}^{-2}$ ). However, the ripple and ripple-induced losses increase strongly if the TF coils are assumed to suffer increasing magnitudes of misalignment. Surface heat loads may become problematic if the TF coil misalignment approaches the centimetre level. Ripple-induced losses of the energetic ion tail driven by ion cyclotron range of frequency (ICRF) heating are not expected to generate significant wall or limiter heating in the nominal SPARC plasma scenario. Because the expected classical fast-ion losses are small, SPARC will be able to observe and study fast-ion redistribution due to MHD including sawteeth and Alfvén eigenmodes (AEs). SPARC's parameter space for AE physics even at moderate $Q$ is shown to reasonably overlap that of the demonstration power plant ARC (Sorbom et al., Fusion Engng Des., vol. 100, 2015, p. 378), and thus measurements of AE mode amplitude, spectrum and associated fast-ion transport in SPARC would provide relevant guidance about AE behaviour expected in ARC.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference63 articles.

1. Fast ion transport during applied 3D magnetic perturbations on DIII-D

2. Yang, H. L. , Kim, H. K. , Kim, K. M. , Sa, J. W. , Kim, S. T. , Kim, H. T. , Hong, K. H. , Kim, W. C. , Kim, K. H. , Kim, J. Y. , 2006 KSTAR assembly. In Fusion Energy 2006: Proceeedings of the 21st IAEA Conference, Chengdu, China, pp. 1359–1362, paper FT/2-2. IAEA.

3. Ripple‐induced energetic particle loss in tokamaks

4. Ripple-trapped loss of neutral-beam-injected fast ions in JT-60U

5. Hamiltonian theory of adiabatic motion of relativistic charged particles

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3