Whistler precursor and intrinsic variability of quasi-perpendicular shocks

Author:

Granit Gilad,Gedalin MichaelORCID

Abstract

The structure of a whistler precursor in a quasi-perpendicular shock is studied within two-fluid approach in one-dimensional case. The complete set of equations is reduced to the KdV equation, if no dissipation is included. With a phenomenological resistive dissipation the structure is described with the KdV–Burgers equation. The shock profile is intrinsically time dependent. For sufficiently strong dissipation, temporal evolution of a steepening profile results in generation of a stationary decaying whistler ahead of the shock front. With the decrease of the dissipation parameter, whistler wave trains begin to detach and propagate toward the upstream and the ramp is weakly time dependent. In the weakly dissipative regime the shock front experiences reformation.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3