Development of a new magnetic mirror device at the Korea Advanced Institute of Science and Technology

Author:

Oh D.,Choe M.,Baek G.,Kim D.,Jung B. K.,Chung K. J.,Kourakis I.ORCID,Sung C.ORCID

Abstract

A new magnetic mirror machine named KAIMIR (KAIST mirror) has been designed and constructed at the Korea Advanced Institute of Science and Technology (KAIST) to study mirror plasma physics and simulate the boundary regions of magnetic fusion plasmas such as in a tokamak. The purpose of this paper is to introduce the characteristics and initial experimental results of KAIMIR. The cylindrical vacuum chamber has a length of 2.48 m and a diameter of 0.5 m and consists of three sub-chambers, namely the source, centre and expander chambers. A magnetic mirror configuration is achieved by electromagnetic coils with a maximum magnetic field strength of 0.4 T at the mirror nozzles and 0.1 T at the centre. The source plasma is generated by a plasma washer gun installed in the source chamber with a pulse forming network system. The typical discharge time is ~12 ms with a ~6 ms (1–7 ms) steady period. Initial results show that the on-axis electron density at the centre is 1019–20 m−3 and the electron temperature is 4–7 eV. Two parameters were varied in this initial phase, the source power and the mirror ratio, which is the ratio of highest to lowest magnetic field strength in the mirror-confined region. We observed that the increase of the electron density was mitigated for a source power above 0.2 MW. It was also found that the electron density increases almost linearly with the mirror ratio. Accordingly, the stored electron energy was also linearly proportional to the mirror ratio, similar to the scaling of the gas dynamic trap.

Funder

Korea Advanced Institute of Science and Technology

Khalifa University of Science, Technology and Research

National Research Foundation of Korea

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a diamagnetic loop in KAIMIR;Review of Scientific Instruments;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3