Fast mixing mechanism of two vortex–current filaments

Author:

YATSUYANAGI YUICHI,HATORI TADATSUGU,KATO TOMOKAZU

Abstract

We demonstrate fast mixing of vortex–current filaments by means of numerical simulations of collision (strong interaction) between two straight filaments. The two filaments mutually approach, collide, and are rapidly tangled with each other. In fact, the instantaneous Lyapunov exponent shows that the dynamics becomes chaotic. Then there appear many small regions where the two filaments overlap. We consider each overlapping region to be equivalent to the traditional resistive diffusion region. We assume that the overall ‘reconnection rate’ of the two filaments is proportional to the product of the traditional (non-chaotic) resistive reconnection rate and the normalized overlapping volume. The overlapping volume rapidly increases on the time scale of ideal MHD. When many overlapping regions are produced, the overall reconnection probability, i.e. the sum of the probabilities of reconnection in every overlapping region, should be increased compared with that of the single overlapping region. Thus the overall reconnection rate becomes sufficiently large, although the basic reconnection process in each overlapping region is resistive and slow. We conclude that the fast mixing due to chaos may enhance the conventional resistive reconnection. We call this process ‘chaotic reconnection’.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3