On the re-connexion of magnetic field lines in conducting fluids

Author:

Yeh Tyan,Axford W. Ian

Abstract

The reconnexion of magnetic field lines is described for a special case of steady, incompressible hydromagnetic flow in two dimensions. A similarity solution is obtained which corresponds to the flow of a perfectly conducting, inviscid fluid such that magnetic field lines are carried from two sides toward, then on the other two sides away from, the centre of an X-configuration. The effects of viscosity are important in shocks which form in the vicinity of the X-lines of the configuration. The effects of finite electrical conductivity must be taken into account near the centre of the configuration which, in the symmetrical case discussed, is an X-type neutral point. From an approximate solution valid in this region it is found that the fluid must flow from the larger to the smaller wedges of the X-configuration. Hence, the reconnexion process is such that oppositely directed magnetic field lines move towards the neutral point in the larger wedges, become reconnected at the neutral point, and move away in the smaller wedges. Since the solution in the vicinity of the neutral point appears to be no more than a response to the external flow, which is in turn controlled by conditions far from the neutral point and is essentially unaffected by viscosity and finite electrical conductivity, it is tentatively concluded that the rate of re-connexion of magnetic field lines does not depend on these quantities, and that, in general, re-connexion can be expected to take place rapidly if circumstances are favourable.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3