Second harmonic generation using spatially varying static electron number density in a magnetoplasma

Author:

Chakrabarti N. B.,Basu B. N.

Abstract

The Boltzmann transfer equation for electrons in an r.f. discharge plasma immersed in a stationary magnetic field is solved for the various coefficients of the expansion of the distribution function, expanded in a Taylor series in velocity space. Assuming a spatial variation of static electron number density as the mechanism of harmonic generation, explicit expressions for the inner field and the second harmonic current density are derived. The r.f. electric field is assumed to be spatially uniform. The geometry of the plasma considered is that of a rectangular waveguide, but with the parallel plates of one of the two pairs of the metal plate boundaries of the plasma much more closely spaced than those of the other pair. Cyclotron resonance is studied in a situation where the frequency of electron-neutral particle collisions v is much less than the frequency of the r.f. field ω/2π. The resonance effect is obtained, and is found to be more pronounced at the cyclotron frequency ω = ωc than at 2ω = ωc. For v≫ω/2π, the result is not sensitive to the value of the stationary magnetic field, and the resonance effects are absent. The effect of collisions on the process of harmonic generation is also studied.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3