On Alfvén wave propagation along a circle on dipolar coordinates

Author:

Campos L. M. B. C.ORCID,Silva M. J. S.ORCID,Moleiro F.ORCID

Abstract

The multipolar representation of the magnetic field has, for the lowest-order term, a magnetic dipole that dominates the far field. Thus the far-field representation of the magnetic field of the Earth, Sun and other celestial bodies is a dipole. Since these bodies consist of or are surrounded by plasma, which can support Alfvén waves, their propagation along dipole magnetic field lines is considered using a new coordinate system: dipolar coordinates. The present paper introduces multipolar coordinates, which are an example of conformal coordinates; conformal coordinates are orthogonal with equal scale factors, and can be extended from the plane to space, for instance as cylindrical or spherical dipolar coordinates. The application considered is to Alfvén waves propagating along a circle, that is a magnetic field line of a dipole, with transverse velocity and magnetic field perturbations; the various forms of the wave equation are linear second-order differential equations, with variable coefficients, specified by a background magnetic field, which is force free. The absence of a background magnetic force leads to a mean state of hydrostatic equilibrium, specified by the balance of gravity against the pressure gradient, for a perfect gas or incompressible liquid. The wave equation is simplified to a Gaussian hypergeometric type in the case of zero frequency, otherwise, for non-zero frequency, an extended Gaussian hypergeometric equation is obtained. The solution of the latter specifies the magnetic field perturbation spectrum, and also, via a polarisation relation, the velocity perturbation spectrum; both are plotted, over half a circle, for three values of the dimensionless frequency.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3