Modelling the nonlinear plasma response to externally applied three-dimensional fields with the Stepped Pressure Equilibrium Code

Author:

Wright A.M.ORCID,Kim P.ORCID,Ferraro N.M.ORCID,Hudson S.R.ORCID

Abstract

Small-amplitude, symmetry-breaking magnetic field perturbations, including resonant magnetic perturbations (RMPs) and error fields, can profoundly impact plasma properties in both tokamaks and stellarators. In this work, we perform the first comparison between the Stepped Pressure Equilibrium Code (SPEC) (a comparatively fast and efficient equilibrium code based on energy-minimisation principles) and M3D-C $^{1}$ (a high-fidelity albeit computationally expensive initial-value extended-magnetohydro- dynamic (MHD) code) to assess the conditions under which SPEC can be used to model the nonlinear, non-ideal plasma response to an externally applied $(m=2,n=1)$ RMP field in an experimentally relevant geometry. We find that SPEC is able to capture the plasma response in the weakly nonlinear regime – meaning perturbation amplitudes below the threshold for break up of the separatrix and onset of secondary magnetic island formation – when around half of the total toroidal flux is enclosed in the volume containing the $q=2$ resonant surface. The observed dependence of SPEC solutions on input parameters, including toroidal flux and the number of volumes into which the plasma is partitioned, indicates that additional exploration of the underlying Multi-Region Relaxed MHD physics model is needed to constrain the choice of parameters. Nonetheless, this work suggests promising applications of SPEC to optimisation and fusion plasma design.

Funder

U.S. Department of Energy

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3