Wave dispersion in pulsar plasma. Part 3. Beam-driven instabilities

Author:

Rafat M. Z.ORCID,Melrose D. B.ORCID,Mastrano A.ORCID

Abstract

Beam-driven instabilities are considered in a pulsar plasma assuming that both the background plasma and the beam are relativistic Jüttner distributions. In the rest frame of the background, the only waves that can satisfy the resonance condition are in a tiny range of slightly subluminal phase speeds. The growth rate for the kinetic (or maser) version of the weak-beam instability is much smaller than has been estimated for a relativistically streaming Gaussian distribution, and the reasons for this are discussed. The growth rate for the reactive version of the weak-beam instability is treated in a conventional way. We compare the results with exact calculations, and find that the approximate solutions are not consistent with the exact results. We conclude that, for plausible parameters, there is no reactive version of the instability. The growth rate in the pulsar frame is smaller than that in the rest frame of the background plasma by a factor $2\unicode[STIX]{x1D6FE}_{\text{s}}$ , where $\unicode[STIX]{x1D6FE}_{\text{s}}=10^{2}{-}10^{3}$ is the Lorentz factor of the bulk motion of the background plasma, placing a further constraint on effective wave growth. Based on these results, we argue that beam-driven wave growth probably plays no role in pulsar radio emission.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3