Godbillon-Vey helicity and magnetic helicity in magnetohydrodynamics

Author:

Webb G. M.ORCID,Prasad A.ORCID,Anco S. C.ORCID,Hu Q.ORCID

Abstract

The Godbillon–Vey invariant occurs in homology theory, and algebraic topology, when conditions for a co-dimension 1, foliation of a three-dimensional manifold are satisfied. The magnetic Godbillon–Vey helicity invariant in magnetohydrodynamics (MHD) is a higher-order helicity invariant that occurs for flows in which the magnetic helicity density $h_{m}=\boldsymbol{A}\boldsymbol{\cdot }\boldsymbol{B}=\boldsymbol{A}\boldsymbol{\cdot }(\unicode[STIX]{x1D735}\times \boldsymbol{A})=0$ , where $\boldsymbol{A}$ is the magnetic vector potential and $\boldsymbol{B}$ is the magnetic induction. This paper obtains evolution equations for the magnetic Godbillon–Vey field $\unicode[STIX]{x1D6C8}=\boldsymbol{A}\times \boldsymbol{B}/|\boldsymbol{A}|^{2}$ and the Godbillon–Vey helicity density $h_{\text{gv}}=\unicode[STIX]{x1D6C8}\boldsymbol{\cdot }(\unicode[STIX]{x1D735}\times \unicode[STIX]{x1D6C8})$ in general MHD flows in which either $h_{m}=0$ or $h_{m}\neq 0$ . A conservation law for $h_{\text{gv}}$ occurs in flows for which $h_{m}=0$ . For $h_{m}\neq 0$ the evolution equation for $h_{\text{gv}}$ contains a source term in which $h_{m}$ is coupled to $h_{\text{gv}}$ via the shear tensor of the background flow. The transport equation for $h_{\text{gv}}$ also depends on the electric field potential $\unicode[STIX]{x1D713}$ , which is related to the gauge for $\boldsymbol{A}$ , which takes its simplest form for the advected $\boldsymbol{A}$ gauge in which $\unicode[STIX]{x1D713}=\boldsymbol{A}\boldsymbol{\cdot }\boldsymbol{u}$ where $\boldsymbol{u}$ is the fluid velocity. An application of the Godbillon–Vey magnetic helicity to nonlinear force-free magnetic fields used in solar physics is investigated. The possible uses of the Godbillon–Vey helicity in zero helicity flows in ideal fluid mechanics, and in zero helicity Lagrangian kinematics of three-dimensional advection, are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Godbillon-Vey invariants of Non-Lorentzian spacetimes and Aristotelian hydrodynamics;Journal of Physics A: Mathematical and Theoretical;2023-10-13

2. On the Godbillon-Vey invariant of transversely parallelizable foliations;Differential Geometry and its Applications;2022-04

3. Variational Formulae;Extrinsic Geometry of Foliations;2021

4. A geometric look at MHD and the Braginsky dynamo;Geophysical & Astrophysical Fluid Dynamics;2020-11-12

5. The Godbillon-Vey invariant as topological vorticity compression and obstruction to steady flow in ideal fluids;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3