Calibrated heating rate measurements using electric-field-induced electron extraction in ultracold neutral plasmas

Author:

Guthrie John M.,Jiang Puchang,Roberts Jacob L.ORCID

Abstract

The heating rate of plasma electrons induced by external fields or other processes can be used as an experimental tool to measure fundamental plasma properties such as electrical conductivity or electron–ion collision rates. We have developed a technique that can measure electron heating rates in ultracold neutral plasmas (UNPs) with $\sim 10\,\%$ precision while simultaneously referencing the measurement to a calibrated amount of heating. This technique uses a sequence of applied electric fields in four sections: to control the ratio of electrons to ions in the UNP; to provide a time for the application of fields that cause electron heating and subsequent thermalization of the electrons after the application of those fields; to extract electrons from the UNP using a method sensitive to electron temperature that allows the measurement of electron heating; and to extract the remaining electrons to measure the total electron (and therefore ion) number. The primary signal used to measure the heating rate is the measurement of the number of electrons that escape in the third section of the experiment as a larger number of escaping electrons indicates a larger amount of heating. We illustrate the use of this technique by measuring electron heating caused by high-frequency radiofrequency (RF) fields. In addition to the main technique, several subtechniques to calibrate the electron temperature, electron density, amount of heating and applied RF field amplitude were developed as well.

Funder

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3