Three-dimensional simulations of sheared current sheets: transition to turbulence?

Author:

Gingell ImogenORCID,Sorriso-Valvo Luca,Burgess David,de Vita Gaetano,Matteini Lorenzo

Abstract

Systems of multiple current sheets arise in various situations in natural plasmas, such as at the heliospheric current sheet in the solar wind and in the outer heliosphere in the heliosheath. Previous three-dimensional simulations have shown that such systems can develop turbulent-like fluctuations resulting from a forward and inverse cascade in wave vector space. We present a study of the transition to turbulence of such multiple current sheet systems, including the effects of adding a magnetic guide field and velocity shears across the current sheets. Three-dimensional hybrid simulations are performed of systems with eight narrow current sheets in a triply periodic geometry. We carry out a number of different analyses of the evolution of the fluctuations as the initially highly ordered state relaxes to one which resembles turbulence. Despite the evidence of a forward and inverse cascade in the fluctuation power spectra, we find that none of the simulated cases have evidence of intermittency after the initial period of fast reconnection associated with the ion tearing instability at the current sheets. Cancellation analysis confirms that the simulations have not evolved to a state which can be identified as fully developed turbulence. The addition of velocity shears across the current sheets slows the evolution in the properties of the fluctuations, but by the end of the simulation they are broadly similar. However, if the simulation is constrained to be two-dimensional, differences are found, indicating that fully three-dimensional simulations are important when studying the evolution of an ordered equilibrium towards a turbulent-like state.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3