Abstract
Three-dimensional equilibrium codes are vital for stellarator design and operation, and high-accuracy equilibria are also necessary for stability studies. This paper details comparisons of two three-dimensional equilibrium codes: VMEC, which uses a steepest-descent algorithm to reach a minimum-energy plasma state, and DESC, which minimizes the magnetohydrodynamic (MHD) force error in real space directly. Accuracy as measured by satisfaction of MHD force balance is presented for each code, along with the computation time. It is shown that DESC is able to achieve more accurate solutions, especially near axis. The importance of higher-accuracy equilibria is shown in DESC's better agreement of stability metrics with asymptotic formulae. DESC's global Fourier–Zernike basis also yields solutions with analytic derivatives explicitly everywhere in the plasma volume, provides improved accuracy in the radial direction versus conventional finite differences and allows for exponential convergence. Further, DESC can compute a solution with the same accuracy as VMEC in order-of-magnitude less time.
Funder
U.S. Department of Energy
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献