In search of a data-driven symbolic multi-fluid ten-moment model closure

Author:

Donaghy JohnORCID,Germaschewski KaiORCID

Abstract

The inclusion of kinetic effects into fluid models has been a long standing problem in magnetic reconnection and plasma physics. Generally, the pressure tensor is reduced to a scalar which is an approximation used to aid in the modelling of large scale global systems such as the Earth's magnetosphere. This unfortunately omits important kinetic physics which have been shown to play a crucial role in collisionless regimes. The multi-fluid ten-moment model, however, retains the full symmetric pressure tensor. The ten-moment model is constructed by taking moments of the Vlasov equation up to second order, and includes the scalar density, the vector bulk-flow and the symmetric pressure tensor for a total of ten separate components. Use of the multi-fluid ten-moment model requires a closure which truncates the cascading system of equations. Here we look to leverage data-driven methodologies to seek a closure which may improve the physical fidelity of the ten-moment multi-fluid model in collisionless regimes. Specifically, we use the sparse identification of nonlinear dynamics (SINDy) method for symbolic equation discovery to seek the truncating closure from fully kinetic particle-in-cell simulation data, which inherently retains the relevant kinetic physics. We verify our method by reproducing the ten-moment model from the particle-in-cell (PIC) data and use the method to generate a closure truncating the ten-moment model which is analysed through the nonlinear phase of reconnection.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference20 articles.

1. Noise-induced magnetic field saturation in kinetic simulations

2. Petschek, H.E. 1964 50 magnetic field annihilation. In AAS-NASA Symposium on the Physics of Solar Flares: Proceedings of a Symposium Held at the Goddard Space Flight Center, Greenbelt, Maryland, October 28-30, 1963, vol. 50, p. 425. Scientific and Technical Information Division, National Aeronautics and ${\ldots }$ .

3. Magnetic reconnection

4. Fluid moment models for Landau damping with application to the ion-temperature-gradient instability

5. An improved ten-moment closure for reconnection and instabilities;Ng;Phys. Plasmas,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse regression for plasma physics;Physics of Plasmas;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3