Kelvin–Helmholtz instability under horizontal rotation and magnetic fields

Author:

DÁVALOS-OROZCO L. A.

Abstract

The author's previous work on the Rayleigh–Taylor instability is extended to the Kelvin–Helmholtz instability, and the maximum growth rate of a perturbation and an estimate of its upper bound is obtained for an infinite fluid layer under horizontal rotation where the density, horizontal velocity (shear) and magnetic field are continuously stratified in the direction of gravity. Conclusions are drawn about the possibility of stability for some directions of propagation of the perturbation, even in the case of unstably stratified density. It is also shown that the new terms that appear owing to the interaction of the horizontal shear flow, horizontal rotation and stratified magnetic field increase the range of values that contribute to the estimate of the maximum growth rate compared with previous work. Furthermore, a generalization of the sufficient condition for stability under horizontal rotation alone obtained by Johnson is calculated in the presence of density stratification. A new method is also given to obtain a sufficient condition for stability when a magnetic field is present in addition to rotation and density stratification.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3