Tilting instability of magnetically confined spheromaks

Author:

Mehta RiddhiORCID,Barkov MaximORCID,Sironi Lorenzo,Lyutikov MaximORCID

Abstract

We consider the tilting instability of a magnetically confined spheromak using three-dimensional magnetohydrodynamic and relativistic particle-in-cell calculations with an application to astrophysical plasmas, specifically those occurring in magnetar magnetospheres. The instability is driven by the counter-alignment of the spheromak's intrinsic magnetic dipole with the external magnetic field. Initially, the spheromak rotates – tilts – trying to lower its magnetic potential energy. As a result, a current sheet forms between the internal magnetic field of a spheromak and the confining field. Magnetic reconnection sets in; this leads to the annihilation of the newly counter-aligned magnetic flux of the spheromak. This occurs on a few Alfvén time scales. In the case of a higher-order (second-order) spheromak, the internal core is first pushed out of the envelope, resulting in formation of two nearly independent tilting spheromaks. Thus, the magnetically twisted outer shell cannot stabilize the inner core. During dissipation, helicity of the initial spheromak is carried away by torsional Alfvén waves, violating the assumptions of the Taylor relaxation theorem. In applications to magnetar giant flares, fast development of tilting instabilities and no stabilization of the higher-order spheromaks make it unlikely that trapped spheromaks are responsible for the tail emission lasting hundreds of seconds.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3