Abstract
The impact of an edge radial electric field on the particle orbits and the orbital spectrum in an axisymmetric toroidal magnetic equilibrium is investigated using a guiding centre canonical formalism. Poloidal and bounce/transit-averaged toroidal precession frequencies are calculated, highlighting the role of the radial electric field. The radial electric field is shown to drastically modify the resonance conditions between particles with certain kinetic characteristics and specific perturbative non-axisymmetric modes, and to enable the formation of transport barriers. The locations of the resonances and the transport barriers that determine the particle, energy and momentum transport are shown to be accurately pinpointed in the phase space by employing the calculated orbital frequencies.
Funder
EUROfusion
H2020 European Research Council
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献