Interpreting magnetic helicity flux in solar flux emergence

Author:

Prior C.ORCID,MacTaggart D.ORCID

Abstract

Magnetic helicity flux gives information about the topology of a magnetic field passing through a boundary. In solar physics applications, this boundary is the photosphere and magnetic helicity flux has become an important quantity in analysing magnetic fields emerging into the solar atmosphere. In this work we investigate the evolution of magnetic helicity flux in magnetohydrodynamic (MHD) simulations of solar flux emergence. We consider emerging magnetic fields with different topologies and investigate how the magnetic helicity flux patterns correspond to the dynamics of emergence. To investigate how the helicity input is connected to the emergence process, we consider two forms of the helicity flux. The first is the standard form giving topological information weighted by magnetic flux. The second form represents the net winding and can be interpreted as the standard helicity flux less the magnetic flux. Both quantities provide important and distinct information about the structure of the emerging field and these quantities differ significantly for mixed sign helicity fields. A novel aspect of this study is that we account for the varying morphology of the photosphere due to the motion of the dense plasma lifted into the chromosphere. Our results will prove useful for the interpretation of magnetic helicity flux maps in solar observations.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic helicity evolution during active region emergence and subsequent flare productivity;Astronomy & Astrophysics;2024-06

2. Magnetic Winding: Theory and Applications;Helicities in Geophysics, Astrophysics, and Beyond;2023-12-15

3. ARTop: an open-source tool for measuring active region topology at the solar photosphere;RAS Techniques and Instruments;2023-01

4. Magnetic Winding as an Indicator of Flare Activity in Solar Active Regions;The Astrophysical Journal;2022-03-01

5. On self and mutual winding helicity;Communications in Nonlinear Science and Numerical Simulation;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3