Collisionless relaxation of a Lynden-Bell plasma

Author:

Ewart R.J.ORCID,Brown A.,Adkins T.ORCID,Schekochihin A.A.ORCID

Abstract

Plasmas whose Coulomb-collision rates are very small may relax on shorter timescales to non-Maxwellian quasi-equilibria, which, nevertheless, have a universal form, with dependence on initial conditions retained only via an infinite set of Casimir invariants enforcing phase-volume conservation. These are distributions derived by Lynden-Bell (Mon. Not. R. Astron. Soc., vol. 136, 1967, p. 101) via a statistical-mechanical entropy-maximisation procedure, assuming perfect mixing of phase-space elements. To show that these equilibria are reached dynamically, one must derive an effective ‘collisionless collision integral’ for which they are fixed points – unique and inevitable provided the integral has an appropriate H-theorem. We describe how such collision integrals are derived and what assumptions are required for them to have a closed form, how to prove the H-theorems for them, and why, for a system carrying sufficiently large electric-fluctuation energy, collisionless relaxation should be fast. It is suggested that collisionless dynamics may favour maximising entropy locally in phase space before converging to global maximum-entropy states. Relaxation due to interspecies interaction is examined, leading, inter alia, to spontaneous transient generation of electron currents. The formalism also allows efficient recovery of ‘true’ collision integrals for both classical and quantum plasmas.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3