On hydromagnetic wave interactions in collisionless, high-β plasmas

Author:

Majeski S.ORCID,Kunz M.W.ORCID

Abstract

We describe the interaction of parallel-propagating Alfvén waves with ion-acoustic waves and other Alfvén waves, in magnetized, high- $\beta$ collisionless plasmas. This is accomplished through a combination of analytical theory and numerical fluid simulations of the Chew–Goldberger–Low (CGL) magnetohydrodynamic (MHD) equations closed by Landau-fluid heat fluxes. An asymptotic ordering is employed to simplify the CGL-MHD equations and derive solutions for the deformation of an Alfvén wave that results from its interaction with the pressure anisotropy generated either by an ion-acoustic wave or another, larger-amplitude Alfvén wave. The difference in time scales of acoustic and Alfvénic fluctuations at high- $\beta$ means that interactions that are local in wavenumber space yield little modification to either mode within the time it takes the acoustic wave to Landau damp away. Instead, order-unity changes in the amplitude of Alfvénic fluctuations can result after interacting with frequency-matched acoustic waves. Additionally, we show that the propagation speed of an Alfvén-wave packet in an otherwise homogeneous background is a function of its self-generated pressure anisotropy. This allows for the eventual interaction of separate co-propagating Alfvén-wave packets of differing amplitudes. The results of the CGL-MHD simulations agree well with these predictions, suggesting that theoretical models relying on the interaction of these modes should be reconsidered in certain astrophysical environments. Applications of these results to weak Alfvénic turbulence and to the interaction between the compressive and Alfvénic cascades in strong, collisionless turbulence are also discussed.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3