Development of a field-reversed configuration device using radio frequency antennas to produce E × B for current-drive

Author:

Lee KiyongORCID,Jang Soo Ouk,Yoo Seungryul,Lee Kyu DongORCID

Abstract

A unique field-reversed configuration (FRC) experiment is presently being assembled at the Plasma Technology Research Institute, KFE. It is a compact small-scale FRC device, which uses a set of radio frequency (RF) antennas to produce an internal E × B that drives the electrons for current-drive, in which E is the electric field and B is the magnetic field. This is very similar to the rotating magnetic field (RMF) current-drive, where the horizontal and vertical antennas are driven 90° out of phase. For this device, the RF antennas are arranged differently than the RMF. The RF antennas, being two separate sets, are positioned inside the vacuum chamber. Each set consists of 8 coils, for a total of 16 coils, where 80~100 kHz sine and cosine waveform currents are applied. One set of coils generates a radial B-field, while the other set provides an E-field in the z-direction. As the phase changes, the E and B fields are switched by these two sets. Nevertheless, E × B propagates in the same θ-direction so that this allows the electrons to rotate around the circumference of the device. The FRC device will test wave heating by launching 2.45 GHz microwaves. Also, passive stabilizers are positioned at each end to provide extra stability while preventing tilt instability. The experiment is expected to produce its first plasma in 2025.

Funder

National Research Foundation of Korea

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3