Author:
Quest K.,Rosenberg M.,Kercher B.
Abstract
The dust acoustic, or dust density, wave is a very low frequency collective mode in a dusty plasma that is associated with the motion of the charged and massive dust grains. An ion flow due to an electric field can excite these waves via an ion–dust streaming instability. Theories of this instability have often assumed a shifted-Maxwellian ion velocity distribution. Recently, the linear kinetic theory of this instability was considered using a non-Maxwellian ion velocity distribution (Kählert, Phys. Plasmas, vol. 22, 2015, 073703). In this paper, we present one-dimensional PIC simulations of the nonlinear development of the ion–dust streaming instability, comparing the results for these two types of ion velocity distributions, for several values of the ion drift speed and collision rate. Parameters are considered that reflect the ordering of plasma and dust quantities in laboratory dusty plasma experiments. It is found that, in general, the wave energy density is smaller in the simulations with a non-Maxwellian ion distribution.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献