MHD stagnation-point flows at a current sheet including viscous and resistive effects: general two-dimensional solutions

Author:

Phan T. D.,Sonnerup B. U. Ö.

Abstract

Exact solutions are presented of two-dimensional steady-state incompressible stagnation point flows at a current sheet separating two colliding plasmas. They describe the process of resistive field annihilation (zero reconnection) where the magnetic field in each plasma is strictly parallel to the current sheet, but may have different magnitudes and direction on its two sides. The flow in the (x, y) plane toward the current sheet, located at x = 0, may have an arbitrary angle of incidence and an arbitrary amount of divergence from or convergence towards the stagnation point. We find the most general form of the solution for the plasma velocity and for the magnetic field. For the z compenents of the flow and field, solutions in the form of truncating power series in y are found. The cases obtained in this study contain the solutions obtained by Parker, Sonnerup & Priest, Gratton et al. and Besser, Biernat & Rijnbeek as special cases. The role of viscosity in determining the flow and field configurations is examined. When the two colliding plasmas have the same viscosity and density, it is shown that viscous effects usually are important only in strongly divergent or convergent viscous flows with viscous Reynolds number of the order of unity or smaller. For astrophysical applications the viscous Reynolds number is usually high and the effects of viscosity on the interaction of plasmas of similar properties are small. The formulation of the stagnation-point flow problem involving plasmas of different properties is also presented. Sample cases of such flows are shown. Finally, a possible application of the results from this study to the earth's magnetopause is discussed briefly.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3